Epidemiology, genotypic diversity, and antimicrobial resistance of *Lactococcus garvieae* in farmed rainbow trout (*Oncorhynchus mykiss*)

Duman M.¹; Buyukekiz A.G.¹; Saticioglu I.B.²; Cengiz M.³; Sahinturk P.³; Altun S.¹*

Received: March 2017
Accepted: June 2017

Abstract

Bacterial agents must be genotypically analyzed for vaccinations, effective control programs, and antimicrobial resistance genes that could transfer from aquaculture settings to terrestrial ecosystems and humans. Therefore, we investigated the prevalence, genotypic characterization, and antimicrobial resistance of *Lactococcus garvieae* for two years at aquaculture sites throughout Turkey. A total of 137 *L. garvieae* isolates were obtained from rainbow trout (*Oncorhynchus mykiss*) farms in different regions of Turkey, and three reference strains were used. The isolates were confirmed genotypically using species specific primer sets. All isolates were genotyped with RAPD-PCR using M13 primers. Five different genogroups were determined, and the reference strains were found to differ from all the isolates. Some isolates were compared with the GeneBank database and most isolates were within the same European, Asian, Australian, and South African genogroups. Isolates showed differing levels of resistance to most of the commonly used antimicrobials. The *ermB, ermA, tetM, and tetS* genes were identified and confirmed, whereas the *floR, sulI, sulII, sulIII, tetA, tetB, and tetE* genes were not detected. The identification of antimicrobial resistance genes in rainbow trout fry (weight 0.5 g) showed that genes for antimicrobial resistance could be spread during any stage of the fishes’ life, thereby facilitating transmission of resistance to humans and other animals. The investigation of antimicrobial resistance genes in phenotypically susceptible isolates revealed that it is insufficient to investigate only phenotypic resistance in antimicrobial resistance studies.

Keywords: *Lactococcus garvieae*, Genotyping, RAPD-PCR, Antimicrobial resistance, Antimicrobial resistance genes

1-Uludag University, Faculty of Veterinary Medicine, Aquatic Animal Disease Department, Turkey
2-Erciyes University, Faculty of Veterinary Medicine, Aquatic Animal Disease Department, Turkey
3-Uludag University, Faculty of Veterinary Medicine, Pharmacology and Toxicology Department, Turkey
*Corresponding author's Email: saltun@uludag.edu.tr
Introduction

Lactococcosis is one of the most important diseases and causes of economic loss in aquaculture. It is also an important zoonotic disease that has been isolated from the urinary, circulatory, skin, and respiratory systems of humans in the USA; from bacterial endocarditis infections in Canada; and in immunosuppressed individuals suffering from liver abscess in France (Elliot et al., 1991; Fefer et al., 1998; James et al., 2000; Mofredj et al., 2000; Fihman et al., 2006). Among farmed rainbow trout, the mortality rate from *L. garvieae* infection can reach 50–80% (Itami et al., 1996).

Rainbow trout farmers make extensive use of antimicrobial agents for treating lactococcosis. Antimicrobial agents are mixed with feed or used in bathing treatments for fish, and therefore, contaminated feed and fish feces can be transmitted to other areas via water (Hektoen et al., 1995; Kerry et al., 1996; Coyne et al., 1997; Markestad and Grave, 1996; Holten et al., 1999; Sorum, 1999; Guardabassi et al., 2000; Sorum and L’Abée-Lund, 2002; Boxall et al., 2004; Sorum, 2006). In particular, antimicrobial residues are an important risk for agricultural land using the same water supply, which results in contamination of agricultural products and can infect human consumers of these products. The most common antimicrobials for the control of *L. garvieae* infections are erythromycin, oxytetracycline, amoxicillin, and doxycycline (Munday, 1994). Kawanishi et al. (2005) found resistance against macrolides (erythromycin and lincomycin), oxytetracycline, and some resistance genes (*ermB* and *tetS*) in *L. garvieae* isolated from yellowtail (*Seriola*). In recent years, *L. garvieae* has been found to be sensitive to erythromycin, ofloxacin, ampicillin, and chloramphenicol, whereas a Turkish study reported resistance to penicillin and clindamycin (Ture and Boran, 2015). Bacterial distribution, genetic heterogeneity, and antimicrobial resistance are important issues for effective vaccines. To our knowledge, there is limited research on the antimicrobial resistance profiles of *L. garvieae*, especially with regard to genotyping. The present study therefore investigated genetic heterogeneity and antimicrobial resistance profiles of *L. garvieae* present in farmed rainbow trout obtained from commercial fish farms in Turkey.

Materials and methods

Phenotypic identification of *L. garvieae* A series of 137 isolates were collected from six different regions of Turkey between 2013 and 2015 (Fig. 1). After bacterial isolation from ten different rainbow trout farms (all with production capacities of at least 1000 tons per year), every isolate and three reference strains were identified by Gram staining, oxidase, catalase, oxidation–fermentation (O/F), growth in MacConkey’s agar, motility tests, and polymerase chain reaction analysis (PCR) (Austin and Austin, 2007).
Molecular identification
DNA was extracted by spin column filtration kits according to the manufacturer’s instructions (QIAamp DNA mini kit, 51306, Hilden, Germany) DNA concentration and purity of isolates were measured at 260 nm and 260/280 nm wavelengths using a spectrophotometer (Multiscan Go, Thermo).

Two different PCR primer pairs, and pLG-1/pLG-2 and ITS Lg 30F/ITS Lg 319R were used for the identification of *L. garvieae* (Zlotkin et al., 1998; Dang et al., 2012). The PCR primer pairs and conditions are provided in Table 1.

Table 1: PCR primers and conditions for identification and genotyping *Lactococcus garvieae*.

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer name</th>
<th>Primer set</th>
<th>Amplicon size</th>
<th>PCR Condition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S-rRNA</td>
<td>pLG-1 (F)</td>
<td>5’-CATAACAATGAGAATCGC-3’</td>
<td>1,100 bp</td>
<td>94°C-1m 94°C-1m 72°C-1.5m 72°C-10m</td>
<td>X30 Zlotkin et al., 1998</td>
</tr>
<tr>
<td></td>
<td>pLG-2 (R)</td>
<td>5’-GCACCTTCGCAGTTTCG-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S-23S rRNA</td>
<td>ITS Lg30F</td>
<td>5’-ACTTTATTCCAGTATGGGCTCT-3’</td>
<td>290 bp</td>
<td>94°C-5 m 58°C-30s 72°C-40s 72°C-7m</td>
<td>X30 Dang et al., 2012</td>
</tr>
<tr>
<td></td>
<td>ITS Lg 319R</td>
<td>5’-TTAAAAAGAATTCGCCGCTTTACA-3’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S-rRNA</td>
<td>M13</td>
<td>5’-GAGGTTGGCGGTCTTCT-3’</td>
<td></td>
<td>94°C-2m 94°C-1m 42°C-40s 72°C-2m 72°C-10m</td>
<td>X40 Rossetti and Giraffa, 2005</td>
</tr>
</tbody>
</table>

Molecular characterization of *L. garvieae* with random-amplified polymorphic DNA-PCR (RAPD-PCR)

All the isolates were analyzed using RAPD-PCR for determination of genetic diversity with the M13 primer according to Rossetti and Giraffa (2005). The amplification products were screened with a UV transilluminator after loading into agarose gel (1.5%) with added ethidium bromide at 100 V for 100 minutes. To determine the repeatability of RAPD-PCR analysis, every reference strain was analyzed at least three times (Rossetti and Giraffa, 2005; Ferrario et al., 2012). A dendrogram was constructed using GelJ software (BMC Bioinformatics, UK) according to the unweighted pair-group method with arithmetic mean (UPGMA) (Heras et al., 2015).
Representative isolates of each of the different RAPD-PCR patterns were sequenced with pLG primer pairs and a phylogenetic tree was constructed with MEGA 7 software (Table 1) (Kumar et al., 2016). The pLG sequences were deposited in GenBank (accession numbers are given in Fig. 2).

Figure 2: Comparison of isolates with GenBank database (constructed with MEGA 7), accession numbers were given in brackets.

Susceptibility testing
The isolates were analyzed for erythromycin (ERY) (Sigma, 46256), florfenicol (FFC) (Sigma, F1427), tetracycline (TET) (Sigma, 31741) and sulfamethoxazole (SUL) (Sigma, S7507) resistance using broth dilution methods according to Miller et al. (2014) and Kawanishi et al. (2005). Minimum inhibitory concentration (MIC) values were determined with a 0.008–256 mg mL\(^{-1}\) dilution according to Miller et al. (2014) and CLSI (2014). After incubation at 22°C for 24–48 hours, the bacterial growth in each of the plates was screened and measured at 595 nm wavelength in a microplate reader (Multiscan Go, Thermo) (CLSI, 2014).

PCR amplification and the sequence of antimicrobial resistance genes
To determine the antimicrobial resistance genes, we analyzed the \textit{ermA}
and *ermB* genes for erythromycin, the *floR* gene for florfenicol, the *tetM*, *tetS*, *tetA*, and *tetB* genes for tetracycline, and *sul1*, *sul2*, and *sul3* for sulfamethoxazole resistance using specific primer pairs (Table 2) and PCR conditions (Table 2) with some modifications (Ng et al., 2001; Schmidt et al., 2001; Chen et al., 2007; Van et al., 2008; Nawaz et al., 2011; Wang et al., 2014). The PCR analysis was conducted in our laboratory with positive control genes. The amplification products were screened with a UV transilluminator after loading into agarose gel (1–2%) with ethidium bromide and 100 V for 100 minutes. Following PCR analysis, the antimicrobial-resistant genes were sequenced and deposited in GenBank.

Table 2: PCR primers and conditions of antimicrobial resistance genes.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer set</th>
<th>Amplicon size</th>
<th>PCR Condition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>floR</td>
<td>F. 5’-TACCTCCGTTCGGTCCAAG
R. GAACACTGCAGATAATGC
R. GAACACTGCAGATAATGC</td>
<td>390bp</td>
<td>94°C-4 min, 94°C-30 s, 55°C-30 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
<tr>
<td>erm(B)</td>
<td>F. 5’-GATACGCTGTTACGAAATG
R. GAACTGCGGTCGAGTGC
R. GAACTGCGGTCGAGTGC</td>
<td>364bp</td>
<td>94°C-4 min, 94°C-30 s, 55°C-30 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
<tr>
<td>erm(A)</td>
<td>F. 5’-GAATACGGTAAACCCG
R. AAAAGYAAAACCCG
R. AAAAGYAAAACCCG</td>
<td>332bp</td>
<td>94°C-4 min, 94°C-30 s, 55°C-30 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
<tr>
<td>tet(A)</td>
<td>F. 5’-GCTACATCTGCTGTACG
R. 5’-CATAGATCGCCGTGAAGG
R. 5’-CATAGATCGCCGTGAAGG</td>
<td>210bp</td>
<td>94°C-5 min, 94°C-1 min, 55°C-1 min, 72°C-1.5 min, 72°C-10 min</td>
<td>X30</td>
</tr>
<tr>
<td>tet(B)</td>
<td>F. 5’-CTCAAGACTTGTCGAGTT
R. 5’-CAGATCGCGTGAAAGG
R. 5’-CAGATCGCGTGAAAGG</td>
<td>416bp</td>
<td>95°C-3 min, 95°C-30 s, 55°C-30 s, 72°C-1 min, 72°C-5 min</td>
<td>X25</td>
</tr>
<tr>
<td>tet(M)</td>
<td>F. 5’-GGTAAATGTTGCTGAGG
R. 5’-CAGATGTTGCTTACAA
R. 5’-CAGATGTTGCTTACAA</td>
<td>657bp</td>
<td>95°C-5 min, 95°C-45 s, 55°C-45 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
<tr>
<td>tet(S)</td>
<td>F. 5’-ATGAGAATTTAGG
R. 5’-CTCCTATGTGG
R. 5’-CTCCTATGTGG</td>
<td>573bp</td>
<td>94°C-4 min, 94°C-30 s, 55°C-30 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
<tr>
<td>tet(E)</td>
<td>F. 5’-GTGATGAGCGACTGCT
R. 5’-CTGCTGCTGCACTG
R. 5’-CTGCTGCTGCACTG</td>
<td>1180</td>
<td>95°C-4 min, 95°C-30 s, 62°C-30 s, 72°C-45 s, 72°C-7 min</td>
<td>X25</td>
</tr>
<tr>
<td>sul(1)</td>
<td>F. 5’-CGCGTGGGCTACCTGAA
R. 5’-GGCAGTCCGG
R. 5’-GGCAGTCCGG</td>
<td>433bp</td>
<td>94°C-4 min, 94°C-30 s, 60°C-30 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
<tr>
<td>sul(2)</td>
<td>F. 5’-GGCTCAAGGGCATG
R. 5’-GGGCTG
R. 5’-GGGCTG</td>
<td>293bp</td>
<td>94°C-4 min, 94°C-30 s, 55°C-30 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
<tr>
<td>sul(3)</td>
<td>F. 5’-TCAAGCAG
R. 5’-TTCAAGCAG
R. 5’-TTCAAGCAG</td>
<td>787bp</td>
<td>94°C-4 min, 94°C-30 s, 55°C-30 s, 72°C-1 min, 72°C-7 min</td>
<td>X30</td>
</tr>
</tbody>
</table>
Results

Phenotypic and molecular identification

A total of 137 strains were isolated from carrier or diseased rainbow trout from 10 farms located in four different regions of Turkey except for the Black Sea and Marmara regions (Table 3). The isolates (Gram-positive, oxidase-catalase negative, with non-growth in MacConkey’s agar, O/F fermentative, and non-motile) and the three reference strains were identified with pLG and ITS primer pairs using PCR (Figs. 3 and 4). L. garvieae were isolated in almost every month during every season from rainbow trout (body weight 0.5–3000 g) located in the Central Anatolian (7 isolates), Aegean (124 isolates), Mediterranean (1 isolate), and Eastern Anatolian (5 isolates) regions of Turkey (Table 3, Fig. 5).

Table 3: Isolation information of Lactococcus garvieae.

<table>
<thead>
<tr>
<th>Genogroup</th>
<th>Isolate no</th>
<th>Fish species-weight</th>
<th>Isolation Date</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L69</td>
<td>RT-150g</td>
<td>2013-March</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L6, L7, L8</td>
<td>RT-0.5g</td>
<td>2013-March</td>
<td>Aegean</td>
</tr>
<tr>
<td>C</td>
<td>L68</td>
<td>RT-150g</td>
<td>2013-March</td>
<td>Aegean</td>
</tr>
<tr>
<td>C</td>
<td>L70</td>
<td>RT-0.5g</td>
<td>2013-March</td>
<td>Aegean</td>
</tr>
<tr>
<td>C</td>
<td>L71</td>
<td>RT-130g</td>
<td>2013-March</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L67</td>
<td>RT-250g</td>
<td>2013-March</td>
<td>Central Anatolia</td>
</tr>
<tr>
<td>B</td>
<td>L87, L88</td>
<td>RT-150g</td>
<td>2013-April</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L72, L73, L77</td>
<td>RT-150g</td>
<td>2013-May</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L83</td>
<td>RT-65g</td>
<td>2013-July</td>
<td>Central Anatolia</td>
</tr>
<tr>
<td>A</td>
<td>L86</td>
<td>RT-250g</td>
<td>2013-July</td>
<td>Central Anatolia</td>
</tr>
<tr>
<td>D</td>
<td>L81</td>
<td>RT-250g</td>
<td>2013-July</td>
<td>Central Anatolia</td>
</tr>
<tr>
<td>A</td>
<td>L78</td>
<td>RT-250g</td>
<td>2013-July</td>
<td>Central Anatolia</td>
</tr>
<tr>
<td>A</td>
<td>L79</td>
<td>RT-200g</td>
<td>2013-July</td>
<td>Central Anatolia</td>
</tr>
<tr>
<td>A</td>
<td>L80</td>
<td>RT-3000g</td>
<td>2013-July</td>
<td>Central Anatolia</td>
</tr>
<tr>
<td>A</td>
<td>L20</td>
<td>RT-30g</td>
<td>2013-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L21</td>
<td>RT-30g</td>
<td>2013-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L22, L25</td>
<td>RT-300g</td>
<td>2013-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L124</td>
<td>RT-5g</td>
<td>2013-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L24</td>
<td>RT-8g</td>
<td>2013-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L26</td>
<td>RT-3g</td>
<td>2013-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L74, L75, L76</td>
<td>RT-10g</td>
<td>2013-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L27</td>
<td>RT-250g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L29, L32</td>
<td>RT-0.5g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L33, L34</td>
<td>RT-2g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L36-L51 (16 isolates)</td>
<td>RT-250g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L52</td>
<td>RT-100g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L28, L30, L35</td>
<td>RT-150g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>E</td>
<td>L31</td>
<td>RT-150g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L17, L18</td>
<td>RT-150g</td>
<td>2013-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L11</td>
<td>RT-15g</td>
<td>2013-December</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L116</td>
<td>RT-30g</td>
<td>2013-December</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L130</td>
<td>RT-15g</td>
<td>2013-December</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L19, L118</td>
<td>RT-200g</td>
<td>2014-March</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L1</td>
<td>RT-200g</td>
<td>2014-April</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L4</td>
<td>RT-40g</td>
<td>2014-April</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L128</td>
<td>RT-40g</td>
<td>2014-April</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L5, L125</td>
<td>RT-200g</td>
<td>2014-April</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L2, L3, L16, L115, L63</td>
<td>RT-200g</td>
<td>2014-April</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L66</td>
<td>RT-300g</td>
<td>2014-May</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L65</td>
<td>RT-60g</td>
<td>2014-May</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L62, L64</td>
<td>RT-200g</td>
<td>2014-May</td>
<td>Aegean</td>
</tr>
</tbody>
</table>
Table 3 continued:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L53</td>
<td>RT-8g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L59</td>
<td>RT-150g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L55</td>
<td>RT-200g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L56</td>
<td>RT-100g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L54</td>
<td>RT-8g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L57, L58</td>
<td>RT-250g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L60, L82, L84</td>
<td>RT-200g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L85</td>
<td>RT-200g</td>
<td>2014-June</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L90, L94</td>
<td>RT-12g</td>
<td>2014-July</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L89</td>
<td>RT-300g</td>
<td>2014-July</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L91</td>
<td>RT-150g</td>
<td>2014-July</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L92</td>
<td>RT-200g</td>
<td>2014-July</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L93</td>
<td>RT-200g</td>
<td>2014-July</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L97</td>
<td>RT-10g</td>
<td>2014-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L99</td>
<td>RT-200g</td>
<td>2014-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L96</td>
<td>RT-100g</td>
<td>2014-August</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L98</td>
<td>RT-7g</td>
<td>2014-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L100, L103</td>
<td>RT-250g</td>
<td>2014-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L101</td>
<td>RT-60g</td>
<td>2014-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L102</td>
<td>RT-250g</td>
<td>2014-September</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L104</td>
<td>RT-60g</td>
<td>2014-October</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L105</td>
<td>RT-40g</td>
<td>2014-October</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L108</td>
<td>RT-14g</td>
<td>2014-October</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L107</td>
<td>RT-250g</td>
<td>2014-October</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L106, L111</td>
<td>RT-30g</td>
<td>2014-October</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L110</td>
<td>RT-300g</td>
<td>2014-October</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L109</td>
<td>RT-300g</td>
<td>2014-October</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L12, L131</td>
<td>RT-250g</td>
<td>2014-December</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L13, L14, L122</td>
<td>RT-200g</td>
<td>2014-December</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L123</td>
<td>RT-200g</td>
<td>2014-December</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L15, L132</td>
<td>RT-400g</td>
<td>2014-December</td>
<td>Aegean</td>
</tr>
<tr>
<td>ND</td>
<td>L140</td>
<td>RT-250g</td>
<td>2014-December</td>
<td>East Anatolia</td>
</tr>
<tr>
<td>A</td>
<td>L9, L135</td>
<td>RT-200g</td>
<td>2015-January</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L10, L114</td>
<td>RT-150g</td>
<td>2015-January</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L129</td>
<td>RT-250g</td>
<td>2015-February</td>
<td>Mediterranean</td>
</tr>
<tr>
<td>A</td>
<td>L119</td>
<td>RT-100g</td>
<td>2015-February</td>
<td>Aegean</td>
</tr>
<tr>
<td>B</td>
<td>L133</td>
<td>RT-200g</td>
<td>2015-February</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L112, L120, L126, L127</td>
<td>RT-250g</td>
<td>2015-March</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L117</td>
<td>RT-12g</td>
<td>2015-May</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L121</td>
<td>RT-200g</td>
<td>2015-May</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L113</td>
<td>RT-350g</td>
<td>2015-May</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L134</td>
<td>RT-25g</td>
<td>2015-May</td>
<td>Aegean</td>
</tr>
<tr>
<td>A</td>
<td>L136-L139 (4 isolates)</td>
<td>RT-250g</td>
<td>2015-May</td>
<td>East Anatolia</td>
</tr>
<tr>
<td>ATCC 49156</td>
<td>Yellowtail</td>
<td>1974</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>ATCC 49157</td>
<td>Yellowtail</td>
<td>1974</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>ATCC 43921</td>
<td>Cow</td>
<td>1984</td>
<td>Japan</td>
<td></td>
</tr>
</tbody>
</table>

RT: Rainbow Trout; ATCC: American type culture collection; A, B, C, D and E: represent Genogroups of *L. garvieae*, ND: not determined
Molecular characterization of L. garvieae

Eight different genogroups were determined by RAPD-PCR analyses of 140 L. garvieae strains including the reference strains (see Fig. 6). RAPD-PCR analysis of the 137 isolates (excluding reference strains) showed 99 L. garvieae isolates (72.2%) in group A (Fig. 7), 32 (23.3%) in group B, three (2.1%) in group C, and one isolate was in groups D and E and genogroup of one isolate (isolate L140) wasn’t determined because of band confusion (Table 3). RAPD-PCR showed no strong similarity between the 137 L. garvieae isolates and the three reference strains (Fig. 6). Similarities were 82% between ATCC 49156 and 49157, 86% for group D and A isolates, 72% for ATCC 43921 and the group E isolates, 77% for group C and B isolates, and all isolates shared at least 61% similarity among each other (Fig. 6). Sequence of representative isolates from different RAPD-PCR patterns based on pLG primers was deposited in the GenBank database under the accession numbers KX688051, KX688097, KX688099, KX688151, KX691439, KX691441, and KX714293. Almost all our isolates were in the same phylogenetic genogroup with Japan, Australia, Turkey, Brasilia, Taiwan, Korea, USA, Costa Rica, France, Italy, Iran, China,
South Africa, Lithuania, Denmark, Poland except for L31 and L68. Unlike all sequenced isolates, L68 was in genogroup C in RAPD-PCR analysis. This isolate showed the highest distance from our isolates and GenBank database isolates.

Figure 6: Dendrogram of *Lactococcus garvieae* isolates with RAPD-PCR (49157, 49156, 43921: ATCC strains; 81, 1, 5, 31, 68: each Genogroups of *Lactococcus garvieae*).

Figure 7: PCR images of A Genogroup with RAPD-PCR (the most common profile). 11, 17, 18, 19, 116, 130, 118, 63, 66 and 82 representative isolates of this group (M: Marker: 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,500, 2,000, 3,000bp).

MIC, resistance genes, and sequencing

MIC values and resistance genes of 140 *L. garvieae* isolates are provided in Tables 4 and 5, respectively. MIC ranges for ERY and FFC were appreciably lower than those of the other two antimicrobials. Among all the isolates 25 were phenotypically resistant to FFC, eight to TET, four to ERY, and 132 to SUL. Two phenotypically TET-resistant *L. garvieae* isolates and one phenotypically TET-susceptible isolate had both *tetM* and *tetS* genes, whereas two phenotypically resistant isolates and three non-resistant isolates had *tetM* or *tetS*. *ermA* is the most widely detected gene among the 137 isolates,
and in all cases these genes were detected in phenotypically ERY-susceptible isolates. Only two ERY-resistant isolates carry the *ermB* gene, despite two *ermB* genes being detected as phenotypically sensitive isolates. The *sul1*, *sul2*, *sul3*, *tetA*, *tetB*, and *floR* genes were not detected in any of the 137 isolates. The detected antimicrobial resistance genes were sequenced and deposited in the GenBank database (accession numbers KX722454–KX722466). The *ermA* and *tetM* genes isolated in *L. garvieae* were deposited for the first time in GenBank.

Table 4: Antimicrobial concentration of *Lactococcus garvieae* isolates for Florfenicol, Tetracycline, Sulfamethoxazole and Erythromycin.

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>MIC concentration (mg L⁻¹)</th>
<th>Resistant isolate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florfenicol</td>
<td>0.008 0.016 0.032 0.064 0.128 0.256 0.512</td>
<td>0.08< - + 256<</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.008 0.016 0.032 0.064 0.128 0.256 0.512</td>
<td>0.08< - + 256<</td>
</tr>
<tr>
<td>Sulfa...</td>
<td>0.008 0.016 0.032 0.064 0.128 0.256 0.512</td>
<td>0.08< - + 256<</td>
</tr>
</tbody>
</table>

Table 5: MIC concentration and resistance genes of *Lactococcus garvieae* isolates*.

<table>
<thead>
<tr>
<th>Genotype DNA</th>
<th>Florfenicol</th>
<th>Tetracycline</th>
<th>tetM</th>
<th>tetS</th>
<th>Erythromycin</th>
<th>ermB</th>
<th>ermA</th>
<th>Sulfamethoxazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>B L6</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0.08<</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>B L7</td>
<td>0.008</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
<td>0.08<</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>B L8</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0.016</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>C L68</td>
<td>2</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>0.128</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>C L70</td>
<td>4</td>
<td>64</td>
<td>+</td>
<td>-</td>
<td>0.128</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>C L71</td>
<td>2</td>
<td>64</td>
<td>+</td>
<td>+</td>
<td>0.128</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>B L87</td>
<td>2</td>
<td>0.512</td>
<td>+</td>
<td>+</td>
<td>0.064</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>B L77</td>
<td>2</td>
<td>64</td>
<td>-</td>
<td>-</td>
<td>0.064</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>A L78</td>
<td>4</td>
<td>0.256</td>
<td>+</td>
<td>-</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>A L79</td>
<td>1</td>
<td>0.512</td>
<td>+</td>
<td>-</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>A L80</td>
<td>0.512</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>A L21</td>
<td>0.008</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>0.032</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>A L25</td>
<td>2</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>0.032</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>B L26</td>
<td>1</td>
<td>0.128</td>
<td>-</td>
<td>-</td>
<td>0.064</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>A L27</td>
<td>0.512</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>0.256</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>A L29</td>
<td>2</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>0.064</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>A L34</td>
<td>0.512</td>
<td>64</td>
<td>+</td>
<td>+</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>B L28</td>
<td>1</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>0.256</td>
<td>-</td>
<td>+</td>
<td>256<</td>
</tr>
<tr>
<td>B L5</td>
<td>0.008</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>0.08<</td>
<td>-</td>
<td>+</td>
<td>0.128</td>
</tr>
<tr>
<td>B L99</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>B L100</td>
<td>2</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>A L101</td>
<td>4</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
<td>0.064</td>
<td>+</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>A L104</td>
<td>2</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>0.064</td>
<td>+</td>
<td>-</td>
<td>256<</td>
</tr>
<tr>
<td>A L119</td>
<td>4</td>
<td>2</td>
<td>+</td>
<td>-</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
<td>256<</td>
</tr>
</tbody>
</table>

*Some phenotypic resistant and all of genotypic resistance isolates were given, grey cells demonstrate resistant values, A, B and C are Genogroup of *L. garvieae*

Discussion

This study provides further details on the genetic diversity, prevalence, and mortality rates associated with lactococcosis in rainbow trout. Establishing the genotypic characteristics of *L. garvieae* isolates enables comparison with GenBank isolates from different countries. Antimicrobial resistance studies show
which antimicrobial agents should be used for control of lactococcosis, and reveal the prevalence of antimicrobial resistance genes isolated from fish of various weights in different countries.

Rainbow trout production in cage systems plays an important role in the high aquaculture production in Turkey. We observed a mass mortality associated with high water temperatures (above 15°C) due to lactococcosis in cage systems (field experiment). In addition, water temperature fluctuations contributed to this mortality. When many rainbow trout farms are established within the same water source, and the same water is used for agriculture land and other animals, this can lead to cross-contamination between aquaculture ponds and the terrestrial ecosystem (Boxall et al., 2004). As far as we know, lactococcosis was previously reported in rainbow trout weighing 5 g and 1 kg, and is a cause of mortality in fish fry (Chang et al., 2002; Pereira et al., 2004; Vendrell et al., 2006; Avci et al., 2014). We observed lactococcosis in 0.5 g rainbow trout fry due to the practice of transferring small fish to high-temperature water sources to ensure production continuity. In addition, all sizes of fish (fry, fingerling, portion, and broodstock) could be infected with *L. garvieae* when kept in water warmer than 15°C. Additionally, *L. garvieae* were isolated from some rainbow trout farms that had water sources colder than 15°C, but clinical symptoms were not observed. pLG and ITS primer pairs are mostly used for identification of *L. garvieae* (Zlotkin et al., 1998; Dang et al., 2012); we therefore used both primer pairs, which successfully identified *L. garvieae*. Ferrario et al. (2012) used three different RAPD-PCR primers and reported high discriminatory power of the M13 primer that was used in the present study. Foschino et al. (2008) reported similar results for RAPD-PCR, *sau*-PCR, and AFLP methods for genotyping *L. garvieae*. We identified five different genogroups of our *L. garvieae* isolates with the M13 primer. These results showed that the M13 primer has high discriminatory power, which is in agreement with the findings of other studies. Ravelo et al. (2003) found seven different RAPD profiles that separated three genogroups and reported Turkish isolates that were similar to groups with Spanish, English, Portuguese, and Italian isolates. Altun et al. (2013) identified three different *L. garvieae* genotypes with RAPD-PCR, and these three were the predominant isolates (66.6%). In addition, some were grouped with English and Spanish isolates. We identified *L. garvieae* isolates divided between five different genogroups, and found that reference strains showed differing similarities to those of our isolates. Most of the isolates were in genogroup A, which was predominant (72.2%) in Turkey and showed similar results to those of Altun et al. (2013). The present study is novel in that we used 137 *L. garvieae* isolates in five different genogroups, which represented different regions of Turkey. RAPD pattern similarities showed that transport of infected fish (especially asymptomatic) could spread...
lactococcosis infection to different regions. After *L. garvieae* was first reported in the Aegean region (Diler *et al.*, 2002), the agent was isolated from different regions in Turkey and its rapid spread was reported by Altun *et al.* (2004). Our isolates had similar genetic profiles to those of Aegean region isolates, showing that infections could spread from the Aegean region to different regions of Turkey. When the sequences were compared with isolates from the GenBank database, the isolates from Turkey were in the same genogroups as European (France, Italy, Denmark, and Poland), Asian, Australian, USA, and South African isolates, which were similar to the results of Altun *et al.* (2004). These results showed that most of the *L. garvieae* isolates were homogenous but that heterogeneity was not too low to be ignored.

Due to this genetic heterogeneity, there are no effective immunizations or prevention for all fish production periods (Austin and Austin, 2007). Therefore, farmers must use different antimicrobial agents such as erythromycin, florfenicol, and oxytetracycline to control lactococcosis. There are differing reports that some isolates are susceptible to enrofloxacin and nitrofurantoin, whereas others are resistant to oxolinic acid and sulfamethoxazole, and differing susceptibilities to erythromycin, chloramphenicol, oxytetracycline, and ampicillin have been found (Ravelo *et al.*, 2001; Soltani *et al.*, 2008; Raissy and Ansari, 2011; Raissy and Shahrani, 2015; Raissy and Moumeni, 2016). Some authors found that *L. garvieae* was phenotypically susceptible to erythromycin and chloramphenicol, but was resistant to penicillin and clindamycin (Diler *et al.*, 2002; Altun *et al.*, 2013). In the present study MIC tests showed that, of our 140 *L. garvieae* isolates, four (2.8%) were phenotypically resistant to ERY, 25 (17.8%) were phenotypically resistant to FFC, 15 (10.7%) to TET, and 132 (94.2%) to SUL. Our isolates were mostly susceptible to ERY and TET but highly resistant to SUL. Antimicrobial resistance is more important in aquaculture than terrestrial ecosystems because resistant bacteria can be easily transferred within the aquatic environment and between other farms and humans via water (Itami *et al.*, 1996). Some researchers found *tetS*, the integrase gene, *ermB*, *gyrA*, and *parC* genes in *L. garvieae* (Hirono and Aoki 2001; Kawanishi *et al.*, 2005; Maki *et al.*, 2008; Morandi *et al.*, 2015). Ture and Boran (2015) found *ereA* but not *ereB* in 29 *L. garvieae* isolates. In contrast to other studies, we found that only four isolates were phenotypically resistant to ERY and two of these four isolates carried the *ermB* gene. A total of nine *L. garvieae* isolates carried the *ermA* gene, 13 different *L. garvieae* isolates carried the *ermB* gene, and interestingly 11 genotypically resistant isolates showed susceptibility to ERY, with an average MIC of 0.064 mg L⁻¹. Ture and Boran (2015) found that *tetB* was the most common gene in *L. garvieae* isolated from rainbow trout, whereas Raissy and Shahrani (2015) identified *tetA* gene in 94% of
Phenotypically TET-resistant *L. garvieae* isolates. We found that only 15 isolates were phenotypically resistant to TET, and only four isolates carried the TET resistance genes, which is in contrast to other studies. Also in contrast to other studies, we did not find the *tetB*, *tetE*, and *tetA* genes. While the most common TET genes were found to be *tetB* and *tetA* in other studies, we found that the most common TET resistant genes were seven *tetM* (5%) and four *tetS* genes. One isolate carried the *tetM* and *tetS* genes (multiple antimicrobial resistance), and was phenotypically susceptible to TET. In addition, an important finding was that the four *L. garvieae* isolates carried the *tetM* or *tetS* gene even though they were not phenotypically resistant to TET. However, Maki *et al.* (2008) worked with 146 *L. garvieae* isolates and did not detect the *floR* gene, which is phenotypically susceptible or moderately resistant to FFC. Ture and Boran (2015) found that 14 isolates (with ATCC 49156) carried the *floR* gene, all of which were susceptible to FFC according to the disc diffusion test. Similar to Maki *et al.* (2008), we did not detect the *floR* gene, and we found that 25 isolates were resistant to FFC. Previous studies showed that the resistance of sulphonamides varies from 53% to 86.6% for *L. garvieae* isolates, and there is no detailed research on the sulphonamide resistance of *L. garvieae* (Raissy and Ansari, 2011; Ture and Boran, 2015). Similar to other studies, we found that our *L. garvieae* isolates were phenotypically highly resistant (91.4%) to SUL, whereas no sulphonamide combinations are commonly used for treating lactococcosis. These discrepancies could be based on transferring mobile genetic elements and differences of strains.

In our study, RAPD-PCR showed that four phenotypically TET-resistant isolates carried *tetM* or *tetS*, one TET-susceptible isolate carried both *tetM* and *tetS*, and three *L. garvieae* isolates belonged to the genogroup C. Among the 32 *L. garvieae* isolates within genogroup B, six have the *ermA* gene, two have *ermB*, and one has the *tetS* gene. *ermA* is the most common gene within the B genogroup, whereas the *tetM* and *tetS* genes are the most common in genogroups A and C. Some isolates in genogroups D and E do not show either phenotypic or genotypic antimicrobial resistance.

In conclusion, lactococcosis was the most common infection among farmed rainbow trout from the Aegean region of Turkey, and all isolates are divided into five different genogroups. Knowledge of genetic similarity with isolates from other countries, genetic heterogeneity and homogeneity are recommended for effective aquaculture vaccination programs. We identified high phenotypic SUL resistance, whereas there was low resistance to erythromycin for all the isolates in our study. Consequently, ERY at appropriate dose and time can be used for treating outbreaks of lactococcosis at aquaculture farms in Turkey. The most important finding is that many of the isolates carry resistance genes while being phenotypically susceptible. For
effective control programs against lactococcosis, antimicrobial resistance genes must be evaluated through susceptibility tests and disease prevalence because resistance genes can be transferred from aquaculture settings to terrestrial ecosystems and humans.

Acknowledgements
This research was supported by the Scientific Researcher Department through the KUAP (V)-2014/7 project, and the General Directorate of Agricultural Research and Policies with the TAGEM/14/AR-GE/26 project. This research was approved by the Local Ethics Commission (report 2012-14/04). We thank Prof. Dr. Stefan Schwarz for assistance with the antimicrobial resistance genes. This research formed part of a PhD thesis.

References
Altun, S., Onuk, E.E., Ciftci, A., Buyukekiz, A.G. and Duman, M., 2013. Phenotypic, genotypic characterisation and antimicrobial susceptibility determination of Lactococcus garvieae strains. Journal of The Faculty of Veterinary Medicine, Kafkas University , 19, 375-381.
CLSI, 2014. Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; Second informational supplement. CLSI document VET03/04-S2. Clinical and Laboratory Standards Institute, Wayne, PA. 34(1), page 76.

Kumar, S., Stecher, G. and Tamura, K., 2016. MEGA7: Molecular evolutionary genetics analysis. version 7.0 for bigger datasets. Molecular biology and evolution, msw054.

